Next-Generation Site-Directed Transgenesis in the Malaria Vector Mosquito Anopheles gambiae: Self-Docking Strains Expressing Germline-Specific phiC31 Integrase
نویسندگان
چکیده
منابع مشابه
Next-Generation Site-Directed Transgenesis in the Malaria Vector Mosquito Anopheles gambiae: Self-Docking Strains Expressing Germline-Specific phiC31 Integrase
Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase ...
متن کاملEfficient site-specific transgenesis and enhancer activity tests in medaka using PhiC31 integrase
Established transgenesis methods for fish model systems allow efficient genomic integration of transgenes. However, thus far a way of controlling copy number and integration sites has not been available, leading to variable transgene expression caused by position effects. The integration of transgenes at predefined genomic positions enables the direct comparison of different transgenes, thereby...
متن کاملOrganization of olfactory centres in the malaria mosquito Anopheles gambiae
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory ...
متن کاملTools for Anopheles gambiae Transgenesis
Transgenesis is an essential tool to investigate gene function and to introduce desired characters in laboratory organisms. Setting-up transgenesis in non-model organisms is challenging due to the diversity of biological life traits and due to knowledge gaps in genomic information. Some procedures will be broadly applicable to many organisms, and others have to be specifically developed for the...
متن کاملFemale-biased gene expression in the malaria mosquito Anopheles gambiae
Females of the malaria-carrying mosquito, Anopheles gambiae, must deal with a number of tasks never confronted by males, including blood-feeding and defense against Plasmodium infection. Here, we examine global gene expression differences between the sexes in A. gambiae via Affymetrix GeneChip® microarrays and find a dramatic over-representation of genes expressed more highly in females. Approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0059264